

Winter School in Abstract Analysis

Another cardinal invariant for ideals on $\boldsymbol{\omega}$

Jonathan Cancino Manríquez UNAM-UMSNH, Morelia, México jcancino@matmor.unam.mx

Joint work with M. Hrušák

Introduction.

Contents

2 General facs.

3 In a slightly different direction

Definition.

- Given an ideal 𝒴 on ω, an ultrafilter 𝙂 is an 𝒴-ultrafilter if and only if for any f ∈ ω^ω there exists A ∈ 𝒴 such that f[A] ∈ 𝒴.
- \mathcal{U} is a weak \mathscr{I} -ultrafilter if for any $f \in \omega^{\omega}$ finite to one there exists $A \in \mathcal{U}$ such that $f[A] \in \mathscr{I}$.

Definition.

- Given an ideal 𝒴 on ω, an ultrafilter 𝙂 is an 𝒴-ultrafilter if and only if for any f ∈ ω^ω there exists A ∈ 𝒴 such that f[A] ∈ 𝒴.
- U is a weak 𝒴-ultrafilter if for any f ∈ ω^ω finite to one there exists A ∈ U such that f[A] ∈ 𝒴.

- An ultrafilter \mathcal{U} is a *p*-point if and only if \mathcal{U} is a $Fin \times Fin$ -ultrafilter.
- An ultrafilter U is q-point if and only if U is a weak *ED*_{fin}-ultrafilter.

- An ultrafilter \mathcal{U} is a *p*-point if and only if \mathcal{U} is a $Fin \times Fin$ -ultrafilter.
- An ultrafilter \mathcal{U} is *q*-point if and only if \mathcal{U} is a weak \mathcal{ED}_{fin} -ultrafilter.

- Parametrized diamiond-like principles were introduce by M. Džamonja, M. Hrušák and J. T. Moore.
- This principles are a weakening of the Jensen's diamond principle ◊ that are compatible with the negation of CH.
- For every **Borel** cardinal invariants there is a correspondent parametrized diamond-like principle.
- For many non-Borel cardinal invariants there is a Borel cardinal invariant which implies the former to be ℵ₁. For example:
 - $\bigcirc \ \diamondsuit(\mathfrak{r}) \text{ implies } \mathfrak{u} = \aleph_1. \\ \bigcirc \ \diamondsuit(\mathfrak{b}) \text{ implies } \mathfrak{a} = \aleph_1.$

- Parametrized diamiond-like principles were introduce by M. Džamonja, M. Hrušák and J. T. Moore.
- This principles are a weakening of the Jensen's diamond principle ◊ that are compatible with the negation of CH.
- For every **Borel** cardinal invariants there is a correspondent parametrized diamond-like principle.
- For many non-Borel cardinal invariants there is a Borel cardinal invariant which implies the former to be ℵ₁. For example:
 - $\bigcirc \ \diamondsuit(\mathfrak{r}) \text{ implies } \mathfrak{u} = \aleph_1. \\ \bigcirc \ \diamondsuit(\mathfrak{b}) \text{ implies } \mathfrak{a} = \aleph_1.$

- Parametrized diamiond-like principles were introduce by M. Džamonja, M. Hrušák and J. T. Moore.
- This principles are a weakening of the Jensen's diamond principle ◊ that are compatible with the negation of CH.
- For every **Borel** cardinal invariants there is a correspondent parametrized diamond-like principle.
- For many non-Borel cardinal invariants there is a Borel cardinal invariant which implies the former to be ℵ₁. For example:
 - $\bigcirc \Diamond(\mathfrak{r}) \text{ implies } \mathfrak{u} = \aleph_1.$

- Parametrized diamiond-like principles were introduce by M. Džamonja, M. Hrušák and J. T. Moore.
- This principles are a weakening of the Jensen's diamond principle ◊ that are compatible with the negation of CH.
- For every **Borel** cardinal invariants there is a correspondent parametrized diamond-like principle.
- For many **non-Borel** cardinal invariants there is a **Borel** cardinal invariant which implies the former to be ℵ₁. For example:

- Parametrized diamiond-like principles were introduce by M. Džamonja, M. Hrušák and J. T. Moore.
- This principles are a weakening of the Jensen's diamond principle ◊ that are compatible with the negation of CH.
- For every **Borel** cardinal invariants there is a correspondent parametrized diamond-like principle.
- For many **non-Borel** cardinal invariants there is a **Borel** cardinal invariant which implies the former to be ℵ₁. For example:

$$(\mathfrak{r}) \text{ implies } \mathfrak{u} = \aleph_1.$$

2)
$$\Diamond(\mathfrak{b})$$
 implies $\mathfrak{a} = leph_1$.

- Parametrized diamiond-like principles were introduce by M. Džamonja, M. Hrušák and J. T. Moore.
- This principles are a weakening of the Jensen's diamond principle ◊ that are compatible with the negation of CH.
- For every **Borel** cardinal invariants there is a correspondent parametrized diamond-like principle.
- For many **non-Borel** cardinal invariants there is a **Borel** cardinal invariant which implies the former to be ℵ₁. For example:

$$(\mathfrak{r}) \text{ implies } \mathfrak{u} = \aleph_1.$$

2 $\Diamond(\mathfrak{b})$ implies $\mathfrak{a} = \aleph_1$.

Theorem.

If $\mathfrak{d} = \omega_1$, then there is a *q*-point (weak \mathcal{ED}_{fin} -ultrafilters).

Theorem(M. Dzamonja, M. Hrušák, J. T. Moore) \Diamond (t) implies the existence of *p*-points (*Fin* × *Fin*-ultrafilters)

Given a Borel ideal \mathscr{I} , does there exists a cardinal invariant $\mathfrak z$ such that $\diamondsuit(\mathfrak z)$ implies the existence of (weak) \mathscr{S} -ultrafilters?

Theorem.

If $\mathfrak{d} = \omega_1$, then there is a *q*-point (weak \mathcal{ED}_{fin} -ultrafilters).

Theorem(M. Dzamonja, M. Hrušák, J. T. Moore)

 $\Diamond(\mathfrak{r})$ implies the existence of *p*-points (*Fin* × *Fin*-ultrafilters).

Given a Borel ideal \mathscr{I} , does there exists a cardinal invariant \mathfrak{z} such that $\diamondsuit(\mathfrak{z})$ implies the existence of (weak) \mathscr{I} -ultrafilters?

Theorem.

If $\mathfrak{d} = \omega_1$, then there is a *q*-point (weak \mathcal{ED}_{fin} -ultrafilters).

Theorem(M. Dzamonja, M. Hrušák, J. T. Moore)

 $\Diamond(\mathfrak{r})$ implies the existence of *p*-points (*Fin* × *Fin*-ultrafilters).

Given a Borel ideal \mathscr{I} , does there exists a cardinal invariant \mathfrak{z} such that $\Diamond(\mathfrak{z})$ implies the existence of (weak) \mathscr{I} -ultrafilters?

Definition.

Let \mathscr{I} be a tall Borel ideal. Define a cardinal invariant $\mathfrak{z}(\mathscr{I})$ as follows:

 $\mathfrak{z}(\mathscr{I}) = \min\{|\mathcal{D}| : (\mathcal{D} \subseteq [\omega]^{\omega})(\forall f \in \omega^{\omega})(\exists A \in \mathcal{D})(f[A] \in \mathscr{I})\}$ Similarly, define $\mathfrak{z}_{fin}(\mathscr{I})$ as: $\mathfrak{z}_{fin}(\mathscr{I}) = \min\{|\mathcal{D}| : (\mathcal{D} \subseteq [\omega]^{\omega})(\forall f \in \omega^{\omega} \text{ finite to one})(\exists A \in \mathcal{D})(f[A] \in \mathscr{I})\}$

Definition.

Let \mathscr{I} be a tall Borel ideal. Define a cardinal invariant $\mathfrak{z}(\mathscr{I})$ as follows:

$$\mathfrak{z}(\mathscr{I}) = \min\{|\mathcal{D}| : (\mathcal{D} \subseteq [\omega]^{\omega})(\forall f \in \omega^{\omega})(\exists A \in \mathcal{D})(f[A] \in \mathscr{I})\}$$

Similarly, define $\mathfrak{z}_{fin}(\mathscr{I})$ as:

 $\mathfrak{z}_{\mathit{fin}}(\mathscr{I}) = \min\{|\mathcal{D}| : (\mathcal{D} \subseteq [\omega]^{\omega})(\forall f \in \omega^{\omega} \text{ finite to one})(\exists A \in \mathcal{D})(f[A] \in \mathscr{I})\}$

Let \mathscr{I} be a tall Borel ideal, then the diamond-like principles associated to $\mathfrak{z}(\mathscr{I})$ and $\mathfrak{z}_{fin}(\mathscr{I})$ are the following:

$\diamondsuit(\mathfrak{z}(\mathscr{I}))$

For all Borel function $F : 2^{<\omega_1} \to \omega^{\omega}$ there is a function $g : \omega_1 \to [\omega]^{\omega}$ such that for any $f \in 2^{\omega_1}$, the set $\{\alpha \in \omega_1 : F(f \upharpoonright \alpha) | g(\alpha)] \in \mathscr{I}\}$ is stationary.

$\Diamond(\mathfrak{z}_{\mathit{fin}}(\mathscr{I}))$

For all Borel function $F: 2^{<\omega_1} \to \omega^{\omega}$ with range the set of finite to one functions, there is a function $g: \omega_1 \to [\omega]^{\omega}$ such that for any $f \in 2^{\omega_1}$, the set $\{\alpha \in \omega_1 : F(f \upharpoonright \alpha)[g(\alpha)] \in \mathscr{I}\}$ is stationary.

Let \mathscr{I} be a tall Borel ideal, then the diamond-like principles associated to $\mathfrak{z}(\mathscr{I})$ and $\mathfrak{z}_{fin}(\mathscr{I})$ are the following:

$\Diamond(\mathfrak{z}(\mathscr{I}))$

For all Borel function $F : 2^{<\omega_1} \to \omega^{\omega}$ there is a function $g : \omega_1 \to [\omega]^{\omega}$ such that for any $f \in 2^{\omega_1}$, the set $\{\alpha \in \omega_1 : F(f \upharpoonright \alpha) | g(\alpha)] \in \mathscr{I}\}$ is stationary.

$\diamondsuit(\mathfrak{z}_{\mathit{fin}}(\mathscr{I}))$

For all Borel function $F: 2^{<\omega_1} \to \omega^{\omega}$ with range the set of finite to one functions, there is a function $g: \omega_1 \to [\omega]^{\omega}$ such that for any $f \in 2^{\omega_1}$, the set $\{\alpha \in \omega_1 : F(f \upharpoonright \alpha)[g(\alpha)] \in \mathscr{I}\}$ is stationary.

Let \mathscr{I} be a tall Borel ideal, then the diamond-like principles associated to $\mathfrak{z}(\mathscr{I})$ and $\mathfrak{z}_{fin}(\mathscr{I})$ are the following:

$\Diamond(\mathfrak{z}(\mathscr{I}))$

For all Borel function $F : 2^{<\omega_1} \to \omega^{\omega}$ there is a function $g : \omega_1 \to [\omega]^{\omega}$ such that for any $f \in 2^{\omega_1}$, the set $\{\alpha \in \omega_1 : F(f \upharpoonright \alpha) | g(\alpha)] \in \mathscr{I}\}$ is stationary.

$\Diamond(\mathfrak{z}_{\mathit{fin}}(\mathscr{I}))$

For all Borel function $F: 2^{<\omega_1} \to \omega^{\omega}$ with range the set of finite to one functions, there is a function $g: \omega_1 \to [\omega]^{\omega}$ such that for any $f \in 2^{\omega_1}$, the set $\{\alpha \in \omega_1 : F(f \upharpoonright \alpha)[g(\alpha)] \in \mathscr{I}\}$ is stationary.

Let \mathscr{I} be a Borel tall ideal. Then:

Let \mathscr{I} be a Borel tall ideal. Then:

- $\Diamond(\mathfrak{z}(\mathscr{I}))$ implies the existence of \mathscr{I} -ultrafilters.
- $\Diamond(\mathfrak{z}_{fin}(\mathscr{I}))$ implies the existence of weak \mathscr{I} -ultrafilters.

Let \mathscr{I} be a Borel tall ideal. Then:

- $\Diamond(\mathfrak{J}(\mathscr{I}))$ implies the existence of \mathscr{I} -ultrafilters.
- $\Diamond(\mathfrak{z}_{fin}(\mathscr{I}))$ implies the existence of weak \mathscr{I} -ultrafilters.

General facs.

Contents

3 In a slightly different direction

Remark.

Ramsey ultrafilters are \mathscr{I} -ultrafilters for all Borel ideal \mathscr{I} . In particular $\mathfrak{z}(\mathscr{I}) \leq$ the minimum character of a Ramsey ultrafilter (provided they exist).

Proposition

It is consistent that for all Borel tall ideal \mathscr{I} , $\mathfrak{z}(\mathscr{I}) < \mathfrak{c}$.

A Ramsey ultrafilter $\mathcal U$ is an $\mathscr I$ -ultrafilter for all analytic ideal $\mathscr I$ and that in the Sacks model there are Ramsey ultrafilters of small character.

Remark.

Ramsey ultrafilters are \mathscr{I} -ultrafilters for all Borel ideal \mathscr{I} . In particular $\mathfrak{z}(\mathscr{I}) \leq$ the minimum character of a Ramsey ultrafilter (provided they exist).

Proposition.

It is consistent that for all Borel tall ideal \mathscr{I} , $\mathfrak{z}(\mathscr{I}) < \mathfrak{c}$.

A Ramsey ultrafilter ${\mathcal U}$ is an ${\mathscr I}$ -ultrafilter for all analytic ideal ${\mathscr I}$ and that in the Sacks model there are Ramsey ultrafilters of small character.

Remark.

Ramsey ultrafilters are \mathscr{I} -ultrafilters for all Borel ideal \mathscr{I} . In particular $\mathfrak{z}(\mathscr{I}) \leq$ the minimum character of a Ramsey ultrafilter (provided they exist).

Proposition.

It is consistent that for all Borel tall ideal \mathscr{I} , $\mathfrak{z}(\mathscr{I}) < \mathfrak{c}$.

A Ramsey ultrafilter \mathcal{U} is an \mathscr{I} -ultrafilter for all analytic ideal \mathscr{I} and that in the Sacks model there are Ramsey ultrafilters of small character.

Lemma.

For any Borel ideal \mathscr{I} , $\mathfrak{z}(\mathscr{I}) \leq \max{\mathfrak{z}_{fin}(\mathscr{I}), \mathfrak{r}_{\sigma}}$.

Proposition.

For any tall meager ideal \mathscr{I} we have $\mathfrak{z}_{fin}(\mathscr{I}) \geq \min{\{\mathfrak{d}, \mathfrak{r}\}}$.

Proposition.

If \mathscr{I} is an ideal and there exists a coloring $\varphi : [\omega]^n \to k$ such that all φ -homogeneous sets belong to the ideal \mathscr{I} , then $\mathfrak{z}(\mathscr{I}) \leq \max\{\mathfrak{d}, \mathfrak{r}_{\sigma}\}$.

Lemma.

For any Borel ideal \mathscr{I} , $\mathfrak{z}(\mathscr{I}) \leq \max{\mathfrak{z}_{fin}(\mathscr{I}), \mathfrak{r}_{\sigma}}$.

Proposition.

For any tall meager ideal \mathscr{I} we have $\mathfrak{z}_{fin}(\mathscr{I}) \geq \min{\{\mathfrak{d}, \mathfrak{r}\}}$.

Proposition.

If \mathscr{I} is an ideal and there exists a coloring $\varphi : [\omega]^n \to k$ such that all φ -homogeneous sets belong to the ideal \mathscr{I} , then $\mathfrak{z}(\mathscr{I}) \leq \max\{\mathfrak{d}, \mathfrak{r}_{\sigma}\}$.

Lemma.

For any Borel ideal \mathscr{I} , $\mathfrak{z}(\mathscr{I}) \leq \max{\mathfrak{z}_{fin}(\mathscr{I}), \mathfrak{r}_{\sigma}}.$

Proposition.

For any tall meager ideal \mathscr{I} we have $\mathfrak{z}_{fin}(\mathscr{I}) \geq \min{\{\mathfrak{d}, \mathfrak{r}\}}$.

Proposition.

If \mathscr{I} is an ideal and there exists a coloring $\varphi : [\omega]^n \to k$ such that all φ -homogeneous sets belong to the ideal \mathscr{I} , then $\mathfrak{z}(\mathscr{I}) \leq \max\{\mathfrak{d}, \mathfrak{r}_{\sigma}\}.$

 $\mathfrak{z}_{fin}(\mathscr{I}) \leq \mathfrak{d}$ for all analytic *p*-ideal on ω .

Theorem.

It is consistent that for all analytic tall *p*-ideal $\mathscr{I}_{\mathfrak{F}in}(\mathscr{I}) < \mathfrak{d}$.

Another cardinal invariant for ideals on ω_{-13}

 $\mathfrak{z}_{fin}(\mathscr{I}) \leq \mathfrak{d}$ for all analytic *p*-ideal on ω .

Theorem.

It is consistent that for all analytic tall *p*-ideal $\mathscr{I}_{fin}(\mathscr{I}) < \mathfrak{d}$.

Is 𝔅_{fin}(𝒴) = min{𝔅, 𝔅} for all analytic *p*-ideal? This holds for the ideal 𝔅.

Is it consistent that there exist a Borel ideal 𝖉 such that _β(𝒫) > max{0, τ_σ}?

Is 𝔅_{fin}(𝒴) = min{𝔅, 𝔅} for all analytic *p*-ideal? This holds for the ideal 𝔅.

Is it consistent that there exist a Borel ideal 𝖉 such that _β(𝒫) > max{0, τ_σ}?

Is 𝔅_{fin}(𝒴) = min{𝔅, 𝔅} for all analytic *p*-ideal?This holds for the ideal 𝔅.

Is it consistent that there exist a Borel ideal \mathscr{I} such that $\mathfrak{z}(\mathscr{I}) > \max{\mathfrak{d}, \mathfrak{r}_{\sigma}}$?

- Is 𝔅_{fin}(𝒴) = min{𝔅, 𝔅} for all analytic *p*-ideal?This holds for the ideal 𝔅.
- Is it consistent that there exist a Borel ideal \mathscr{I} such that $\mathfrak{z}(\mathscr{I}) > \max{\{\mathfrak{d}, \mathfrak{r}_{\sigma}\}}?$

In a slightly different direction.

Contents

3 In a slightly different direction.

Another cardinal invariant for ideals on ω

Theorem(Vojtáš).

An ultrafilter \mathcal{U} is rapid if and only if it has non-empty intersection with any tall summable ideal.

Theorem (J. Flašková).

There is a family \mathcal{D} of tall summable ideals of cardinality \mathfrak{d} such that for any ultrafilter \mathcal{U}, \mathcal{U} is rapid if and only if $\mathscr{I} \in \mathcal{D} \mathcal{U} \cap \mathscr{I}$ is not empty.

Question (J. Flašková).

What is the minimal size of a family \mathcal{D} of tall summable ideals such that rapid ultrafilters can be characterized as those ultrafilters on the natural numbers which have a nonempty intersection with all ideals in the family \mathcal{D} ?

Theorem(Vojtáš).

An ultrafilter \mathcal{U} is rapid if and only if it has non-empty intersection with any tall summable ideal.

Theorem (J. Flašková).

There is a family \mathcal{D} of tall summable ideals of cardinality \mathfrak{d} such that for any ultrafilter \mathcal{U}, \mathcal{U} is rapid if and only if $\mathscr{I} \in \mathcal{D} \mathcal{U} \cap \mathscr{I}$ is not empty.

Question (J. Flašková).

What is the minimal size of a family \mathcal{D} of tall summable ideals such that rapid ultrafilters can be characterized as those ultrafilters on the natural numbers which have a nonempty intersection with all ideals in the family \mathcal{D} ?

Theorem(Vojtáš).

An ultrafilter \mathcal{U} is rapid if and only if it has non-empty intersection with any tall summable ideal.

Theorem (J. Flašková).

There is a family \mathcal{D} of tall summable ideals of cardinality \mathfrak{d} such that for any ultrafilter \mathcal{U}, \mathcal{U} is rapid if and only if $\mathscr{I} \in \mathcal{D} \mathcal{U} \cap \mathscr{I}$ is not empty.

Question (J. Flašková).

What is the minimal size of a family \mathcal{D} of tall summable ideals such that rapid ultrafilters can be characterized as those ultrafilters on the natural numbers which have a nonempty intersection with all ideals in the family \mathcal{D} ?

Proposition(*).

For any family of tall summable ideals \mathcal{D} with $|\mathcal{D}| < \mathfrak{d}$, there is an ultrafilter \mathcal{U} which meets all ideal $\mathscr{I} \in \mathcal{D}$, but \mathcal{U} is not a rapid ultrafilter.

Corollary.

 \mathfrak{d} is equal to the minimum cardinality of a nonempty family \mathcal{D} of tall summable ideals such that for any ultrafilter \mathcal{U} , \mathcal{U} is rapid if and only if \mathcal{U} meets all ideals $\mathscr{I} \in \mathcal{D}$.

Proposition(*).

For any family of tall summable ideals \mathcal{D} with $|\mathcal{D}| < \mathfrak{d}$, there is an ultrafilter \mathcal{U} which meets all ideal $\mathscr{I} \in \mathcal{D}$, but \mathcal{U} is not a rapid ultrafilter.

Corollary.

 \mathfrak{d} is equal to the minimum cardinality of a nonempty family \mathcal{D} of tall summable ideals such that for any ultrafilter \mathcal{U} , \mathcal{U} is rapid if and only if \mathcal{U} meets all ideals $\mathscr{I} \in \mathcal{D}$.

A stronger version of Proposition(*) is consistent.

Definition.

Let \mathscr{I} be an ideal on ω . For an ultrafilter \mathcal{U} , let's say that \mathcal{U} is an (\mathscr{I}, p) -point if \mathcal{U} is a *p*-point and also an \mathscr{I} -ultrafilter.

A stronger version of Proposition(*) is consistent.

Definition.

Let \mathscr{I} be an ideal on ω . For an ultrafilter \mathcal{U} , let's say that \mathcal{U} is an (\mathscr{I}, p) -point if \mathcal{U} is a *p*-point and also an \mathscr{I} -ultrafilter.

Theorem

Rational Perfect Set Forcing preserves (\mathscr{I}, p) -points for any analytic *p*-ideal \mathscr{I} .

Theorem

Let \mathscr{I} be an F_{σ} *p*-ideal and let \mathcal{U} be an (\mathscr{I}, p) -point. Let $\mathbb{P}_{\alpha} = \langle \mathbb{P}_{\beta}, \dot{\mathbb{Q}}_{\beta} : \beta < \alpha \rangle$ be a CSI of proper forcing notions such that for all $\beta < \alpha$, $\mathbb{P}_{\beta} \Vdash \dot{\mathbb{Q}}_{\beta}$ preserves (\mathscr{I}, p) -points. Then \mathbb{P}_{α} preserves (\mathscr{I}, p) -points.

Theorem

Rational Perfect Set Forcing preserves (\mathscr{I}, p) -points for any analytic *p*-ideal \mathscr{I} .

Theorem

Let \mathscr{I} be an F_{σ} *p*-ideal and let \mathcal{U} be an (\mathscr{I}, p) -point. Let $\mathbb{P}_{\alpha} = \langle \mathbb{P}_{\beta}, \dot{\mathbb{Q}}_{\beta} : \beta < \alpha \rangle$ be a CSI of proper forcing notions such that for all $\beta < \alpha$, $\mathbb{P}_{\beta} \Vdash \dot{\mathbb{Q}}_{\beta}$ preserves (\mathscr{I}, p) -points. Then \mathbb{P}_{α} preserves (\mathscr{I}, p) -points.

Putting this two theorems together we obtain.

Theorem.

In the Rational Perfect Set Forcing model, given any family \mathcal{D} of tall summable ideals with $|\mathcal{D}| < \mathfrak{d}$, there is an ultrafilter \mathcal{U} such that is an \mathscr{I} -ultrafilter for all $\mathscr{I} \in \mathcal{D}$, but there is no rapid ultrafilter.

Putting this two theorems together we obtain.

Theorem.

In the Rational Perfect Set Forcing model, given any family \mathcal{D} of tall summable ideals with $|\mathcal{D}| < \mathfrak{d}$, there is an ultrafilter \mathcal{U} such that is an \mathscr{I} -ultrafilter for all $\mathscr{I} \in \mathcal{D}$, but there is no rapid ultrafilter.

Thank you for your attention!